Japanese Reverse Aging Process in cells and challenges a long standing Theory of Aging

Japanese Reverse Aging Process in cells and challenges a long standing Theory of Aging

4 minute read

Listen to article
Audio is generated by DropInBlog's AI and may have slight pronunciation nuances. Learn more


It is common knowledge in the aging field that mutations in DNA can lead to aging. This is one long-held theory of aging. This view is easy to understand when

DNA Mutations & Aging
DNA Mutations & Aging

one realizes that DNA is the blueprint for making our proteins, and thus DNA regulates all cell functions. Mutations in the DNA, therefore, lead to unregulated functions, i.e., aging. For this and many other reasons, the DNA damages that accumulate throughout our lifespan have been viewed as a hallmark of aging.


Most of our DNA is located in the nucleus of our cells; however, DNA is also found in other cellular places. Our mitochondria, the organelle in charge of producing energy, has their own DNA and is therefore also suspected to be involved in the aging process. Mutation accumulations in the mitochondrion are easy to envision when one keeps in mind that as the mitochondria produce energy in the form of ATP, it also produces reactive oxygen species (ROS) via side reactions. And ROS, like all free radicals, can lead to uncontrolled and harmful reactions that damage the mitochondria and all other molecules in the cells, including proteins and the DNA in the nucleus.

The Mitochondria In Our Cells And Theory Of Aging

There is no doubt that the mitochondrion plays a role in aging, as studies that entail modifying proteins in the mitochondria lead to accelerated aging. However, the mechanisms for how the aging process is promoted by the mitochondrion are still being elucidated, and many questions remain. For example, all mitochondria have multiple copies of their DNA. So the redundancy of the DNA may mean that the damage caused by ROS can be kept in check for many years. This observation brings into question how ROS is actually affecting the mitochondria. Another interesting observation is that genetically modified mice that either has increased antioxidant defenses do not extend their lifespan or experiments that artificially increase ROS do not show increased aging. So how do we

Mitochondria in cell
Mitochondria in cells

account for the role of the mitochondria’s DNA in aging?

The Japanese Flip The Mutation Theory Of Aging Around

In the article by Hashizume and his colleagues, the researcher may have come up with a reason for how mitochondria DNA is affecting aging (Scientific Reports, 5:10434). This research group looked not at the genetic mutation sequences but at how the DNA was being modified without changing the DNA sequence, commonly referred to as epigenetic modifications. In other words, in epigenetics, the DNA can be “modified” by several mechanisms, including, for example, adding a methyl group to the DNA.

It's Not Mitochondrial Mutations

The DNA base pair sequence is not changed; therefore, it is technically NOT mutated, but it is modified, and the response is that proteins and their function can be regulated in a positive or negative way. These epigenetic changes have been well-documented, recognized as part of aging, and are viewed as another hallmark of aging. Here is what is novel about this article.

The Mitochondrial Mutation Theory Of Aging Challenged

Since the DNA is not mutated, it is therefore technically possible that if we can find a way to reverse the epigenetic modification on the DNA, the process would reverse the aging modification on the mitochondria DNA. And that is exactly what these researchers have done.

Proof Using Young And Old Cells

Using fibroblast cells, the researchers could change the epigenetic modifications and reverse the aging process on these cells and rejuvenate them.

Cell Mitochondria Aging
Cell Mitochondria Aging

So the researchers have demonstrated that it is not the mutations in the mitochondria that lead to aging but rather the epigenetic changes. But not only that, it can be reversed. In addition, they also determined that the mitochondria DNA sequences that are of particular importance in terms of affecting the aging epigenetic signature were a sequence that encodes for a protein (product of GCAT gene) required to make glycine, an amino acid common in all proteins.

Resveratrol Regulates A Main Epigenetic Protein

Interestingly to those taking resveratrol is the following. Resveratrol regulates sirtuin 3, which is the MAIN deacetylating sirtuin (i.e., another epigenetic modifying protein) found in the mitochondria. Sirtuin 3 has already been shown to modify ROS and enzymes involved with energy metabolism. So it would be interesting in the future to determine if sirtuin 3 can also affect the production of glycine and improve our cells and hence our lifespans too.

For now consider Resveratrol as well as our other products we have tested that activate Sirtuins:

RevGenetics Products:
View RevGenetics Products

« Back to Blog